Future J-PARC experiment to Search for H particle

Contents

- o Introduction
 - H-dibaryon, Theoretical expectation, Observation
- o Letter of intent
 - Proposed setup at J-PARC, Prototype, Expected yield
- o Progress on accelerator of J-PARC Improvement of Spill, Intensity
- o Summary

H-dibaryon

- A predicted compact 6-quark (uuddss) state
 - R.L. Jaffe, Phys. Rev. Lett. 38 (1977) [MIT bag model]
 - Which is 35 years ago. One of most famous candidate exotic-hadron, but still not observed.
 - No Pauli exclusion, Flavor singlet state
 - Bound State ($B_H > 7$ MeV is ruled out by $_{\Lambda\Lambda}$ He) or Resonance

Recent Lattice Calculations

Lattice calculation (HAL) gives:

- Nuclear force, attractive potential at long distance & short range repulsion was produce by the first principle.
- Extended to baryon-baryon interaction including hyperons under SU_f(3) symmetry.
- Singlet state, H-dibaryon state, shows no repulsive core but attractive potential. (regardless of lattice size of 2 to 4 fm, and pion mass of 1015 to 673 MeV)

T.Inoue et al. (HAL coll.) Phys Rev. Lett 106 (2011)162002

Binding energy extrapolated by HAL and NPLQCD lattice calculation shows B_H is around $\Lambda\Lambda$ threshold

 m_{π} (GeV) S.R.Beane et al. (NPLQCD coll.) arXiv:1103.2821v1 [hep-tat] (2011)

Trials in the History

• KEK-E224 and KEK-E522 have shown interesting object in $\Lambda\Lambda$ invariant mass.

[E224] Observation in 12 C(K-,K+) above $\Lambda\Lambda$ threshold. [J.K.Ahn et al. PLB444 (1998) 267]

[E522] More statistics. Then resonance (or final-state-interaction) at 2242 MeV (12 MeV above $\Lambda\Lambda$ threshold). [C.J. Yoon et al. PRC75 (2007) 022201]

Letter of Intent

- We prepared LOI and Proposal to meet coming rapid increase of J-PARC intensity for K-beam.
- Handed in to J-PARC PAC,
 in Jul 2011, J.K. Ahn, K. Imai, et al.
 " Search for H-Dibaryon with a Large Acceptance Hyperon Spectrometer".
- Intra-nuclear cascade model calculations developed by
 Y.Nara, A.Ohnishi T. Harada, et al. e.g. arXiv: nucl-th/9608017v1 are the theoretical pilot of the letter.

KEK J-PARC-PAC2011-03

Letter of Intent for 50 GeV Proton Synchrotron

Search for H-Dibaryon with a Large Acceptance Hyperon Spectrometer

J.K.Ahn*, B.H.Choi, S.H.Hwang, S.H.Kim, S.Y.Kim, J.K.Lee, J.Y.Park, S.Y.Ryu Pusan National University, Korea

S.Hasegawa, R.Honda, Y.Ichikawa, K.Imai*, R.Kiuchi, H.Sako, S.Sato, K.Shirotori, H.Sugimura, K.Tanida Japan Atomic Energy Agency (JAEA), Japan

H.Fujioka, T.Nagae, M.Niiyama *Kyoto University*, *Japan*

R.Kiuchi, K.Tanida Seoul National University, Korea

M.Ieiri, K.Ozawa, H.Takahashi, T.Takahashi $High\ Energy\ Accelerator\ Research\ Organization\ (KEK), Japan$

> K.Nakazawa, M.Sumihama Gifu University

 $\begin{array}{c} {\rm B.Bassalleck} \\ {\it University~of~New~Mexico, USA} \end{array}$

(* indicate contact persons) 6 July, 2011

Proposed Spectrometer

- Larger acceptance in the Helmholtz-type (super conducting, T-class) magnet.
- 3-D tracking with higher rate (upto 10^6 Kaon beam, highest in J-PARC) with gating performance.

Example of TPC configuration and simulated $\Lambda\Lambda$ event

For each plane on top and bottom, 6000 pads in 10 ~ 38 pad layers (L:10mm gap:3mm)

Sensitivity to Mass and Lifetime

- The detection efficiency was estimated to reach almost 0.9 by requiring that a particle should pass more than 8 pad layers.
- Good sensitivity to the whole mass region of our interest for the H above threshold, and to the lifetime shorter than 10E-9 sec for the H --> Lambda p pi- decay.

Prototype

TPC 20cm drift x 10cm x 10 cm square,

- (1) 7 kV -> 16 kV for TPC field,
- $(2) \pm 0.7V$ for gating field,
- (3) 3 kV for 3 planes GEM + drift space

HV module is capable independent voltage setting.

R&D items at RCNP in 2011 Nov/Dec

- (i) GEM with read out 2D pad (width 2, 3, 4 mm)
- (ii) Gating wire with a field guide plane (±150V)
 - up to 10E6.
- (iii) Gas (P10, CF4+Ar)

To reduce ch.# More items to be tested at test bench.

- (i) muPIC (1D+1D) readout (with 0.4mm pitch)
- (ij) gating operation at GEM(±few 10 V)
- To reduce gate noise

Performance of Prototype

(RCNP-E384, Nov 2011, 400MeV proton)

Hit pattern distribution (left), and Residual distribution (right) with sigma ~ 400 um.

Mass resolution

With a position resolution of 300 um, the pion momentum resolution of about 1% is expected at 300 MeV/c.

Mass resolutions is $\Gamma = 2$ MeV for $\Delta \mathbf{p/p} = 1\%$ **p**, and $\Gamma = 3.5$ MeV for $\Delta \mathbf{p/p} = 3\%$ **p**.

Expected Statistics

[\]] 90% C.L. upper limits on the direct H production cross section on 12 C and 3He. The dashed line shows a theoretical calculation for 12C and 3He based on the model of Aerts and Dover (PRD28(1983)450)

Many experiment is performed and excluded H dibaryon mass upto 2200 MeV, But the experiments were not sensitive to this cross section if H-dibaryon mass is near $\Lambda\Lambda$ threshold because of large tail of quasifree Ξ - production.

Parameters	Values	
K^- beam	$10^6 K^-$ per spill (6 second)	
Cu target	$4.25 imes 10^{22}$	
$d\sigma/d\Omega_L^{Cu}(\Lambda\Lambda)$	$14.6 \mu \mathrm{b/sr}$	
$\Delta\Omega$	$0.11 \mathrm{\ sr}$	
Branching ratio $(\Lambda o p\pi^-)$	0.64	
Detection efficiency of K^+ with Kurama	0.5	
Detection efficiency of two Λ with TPC	0.5	
Yield	0.007 event / spill	

3300 $\Lambda\Lambda$ -events <--> 0.007 events / spill

If $d\sigma_H/d\Omega = 0.2\mu b/sr$, in 100shifts (3 shift / day), 46 H-events are expected

(K^-, K^+) reaction for $\Lambda\Lambda$ production

(1)

 Ξ ⁻ interacts with a proton in the same nucleus to produce $\Lambda\Lambda$.

(2)

 Λ is produced with an intermediate meson in **K**⁻**p** reaction and then the meson interacts with a proton in the same nucleus to produce the other Λ and **K**⁺.

(3) $\Xi^-\mathbf{p}$ fuses to **H** which decays into $\Lambda\Lambda$.

whereas J-PARC accelerator has been trying to

- Recover from the Earthquake
 - Up to some tens mm shift in the beam lines.
 - In Feb. 2012, hadron hall re-started experiment with beam back!
- Improve fluctuation in the in-spill structure
 - By the smoother with RF to randomize spill spiking.
- Increase Intensity
 - Upgrade LINAC in 2013 summer (181MeV -> 400 MeV) by adding the ACS-type cavities (324 × 3 MHz).
 - Improve diagnostics in the LINAC, looking longitudinal (as well as existing transverse) beam structure, with RF.

For Secondary (K, π) Beam in Hadron Experiment , Beam extraction Spill structure improvement

For J-PARC power

LINAC ACS upgrade (181MeV->400MeV)

N.Ohuchi (J-PARC) ATAC report 2011

Summary

- H-dibaryon is predicted in 35 years ago.
- Some historical trials are performed for hunting the exotic hadron.
- A letter of Intent for experimental revival at J-PARC is prepared.
- A spectrometer, including prototype, is being R&D'ed to meet the coming rapid improvements of J-PARC accelerator.

Note

Signal:

H production cross section is estimated based on the KEK-PS E224 measurement of enhanced lambda-Lambda pairs from ¹²C near the lambda-Lambda threshold.

"Background":

 $\Lambda\Lambda$ production cross section is estimated from ⁶³Cu based on the measured ⁶³Cu(K-,K+)X cross section in KEK-PS E176.